Resumen
Introducción: Cada año mueren seis millones de personas a causa de una lesión traumática, 40% de estas muertes se deben a la hemorragia post-trauma, siendo la primera causa de muerte prevenible a nivel mundial. La presencia y persistencia de la hemorragia conduce a la coagulopatía inducida por trauma (TIC), la cual juega un papel importante en la morbimortalidad de estos pacientes. La detección temprana y tratamiento adecuado de la TIC tiene el potencial de reducir la mortalidad de los pacientes en esta población. Objetivo: Analizar datos de tromboelastografía para determinar perfil de coagulación y correlacionar con uso de hemoderivados y mortalidad. Metodología: Se realizó un estudio retrospectivo con los datos de pacientes post-trauma a quienes se les realizó tromboelastografía en el Hospital General de Accidentes del Instituto Guatemalteco de Seguridad Social del año 2018 al año 2020. Se realizó evaluación y revisión de las variables del tromboelastograma (TEG®), perfil de coagulación por tromboelastografía, mortalidad, ingreso a cuidados intensivos, intervención quirúrgica, tiempo de estancia hospitalaria, cantidad y tipo de hemoderivados utilizados como terapia transfusional. Resultados: 384 pacientes se clasificaron como perfil fibrinolítico, hipocoagulable, hipercoagulable, hemorrágico o normal según los resultados del TEG®. Del total de participantes, el 70.6% presentó alguna alteración de la coagulación, y el 29.4% cumplió criterios de normalidad. La mortalidad promedio en el estudio fue del 32.8%, la mayor reportada en pacientes con perfil hipocoagulable, 49.4%, seguido de hemorrágicos, 37%, hipercoagulables, 28.9%, normales, 27.4%, y finalmente el fibrinolítico, 18.6%. Además, se analizó la terapia transfusional utilizada, siendo la concentración de hematíes la terapia más común con un 61.1%, seguida del plasma fresco congelado con un 28.7% y las plaquetas con un 10.2%. Conclusión: La tromboelastografía es útil para la clasificación del perfil de coagulación del paciente post-trauma y es un estudio de laboratorio que permite determinar los hemoderivados que un paciente traumatizado requiere para reducir la tasa de mortalidad.
Citas
- Brohi, K., Eaglestone, S. Traumatic coagulopathy and massive transfusion: improving outcomes and saving blood. Programme Grants for Applied Research, 2017, Nov.; No. 5.19, 1–74. https://doi.org/10.3310/pgfar05190 https://www.ncbi.nlm.nih.gov/books/NBK464933/ DOI: https://doi.org/10.3310/pgfar05190
- Organización Panamericana de la Salud. Estado de salud de la población : mortalidad en la región de las Américas. Salud en las Américas +2017. 15a. ed., Washington, D.C., 2017. https://www.paho.org/salud-en-las-americas-2017/ro-mortality-es.html
- Gonzalez, E., Moore, E. E., Moore, H. B., Chapman, M. P., Chin, T. L., Ghasabyan, A., Wohlauer, M. V., Barnett, C. C., Bensard, D. D., Biffl, W. L., Burlew, C. C., Johnson, J. L., Pieracci, F. M., Jurkovich, G. J., Banerjee, A., Silliman, C. C., & Sauaia, A. Goal-directed hemostatic resuscitation of trauma-induced coagulopathy a pragmatic randomized clinical trial comparing a viscoelastic assay to conventional coagulation assays. Annals of Surgery, 2016, June; 263(6): 1051–1059. https://doi.org/10.1097/SLA.0000000000001608 https://pubmed.ncbi.nlm.nih.gov/26720428/ DOI: https://doi.org/10.1097/SLA.0000000000001608
- Duchesne, J. C., McSwain, N.E., Cotton, B. A., Hunt, J.P., Dellavolpe, J., Lafaro, K., Marr, A.B., Gonzalez, E.A., Phelan, H.A., Bilski, T., Greiffenstein, P., Barbeau, J. M., Rennie, K.V., Baker, C.C., Brohi, K., Jenkins, D.H., & Rotondo, M. Damage control resuscitation: The new face of damage control. Journal of Trauma, 2010, Oct.; 69(4): 976–990. https://doi.org/10.1097/TA.0b013e3181f2abc9 https://pubmed.ncbi.nlm.nih.gov/20938283/ DOI: https://doi.org/10.1097/TA.0b013e3181f2abc9
- Smith, S. A. The cell-based model of coagulation: State-Of-The-Art Review. Journal of Veterinary Emergency and Critical Care, 2009, February; 19(1): 3–10. https://doi.org/10.1111/j.1476-4431.2009.00389.x https://pubmed.ncbi.nlm.nih.gov/19691581/ DOI: https://doi.org/10.1111/j.1476-4431.2009.00389.x
- Ruiz, C., & Andresen, M. Treatment of Acute Coagulopathy Associated with Trauma. ISRN Critical Care, 2013, 1–7. https://doi.org/10.5402/2013/783478 https://www.hindawi.com/journals/isrn/2013/783478/ DOI: https://doi.org/10.5402/2013/783478
- Kushimoto, S., Kudo, D., & Kawazoe, Y. Acute traumatic coagulopathy and trauma-induced coagulopathy: An overview. Journal of Intensive Care, 2017, January; 5(1), 6 1–7. https://doi.org/10.1186/s40560-016-0196-6 https://jintensivecare.biomedcentral.com/articles/10.1186/s40560-016-0196-6 DOI: https://doi.org/10.1186/s40560-016-0196-6
- Fries, D., & Martini, W.Z. Role of fibrinogen in trauma-induced coagulopathy. British Journal of Anaesthesia, 2010, August; 105(2): 116–121. https://doi.org/10.1093/bja/aeq161 https://www.bjanaesthesia.org/article/S0007-0912(17)33529-8/pdf DOI: https://doi.org/10.1093/bja/aeq161
- Cap, A., & Hunt, B. Acute traumatic coagulopathy. Current Opinion in Critical Care, 2014, December; 20(6): 638–645. https://doi.org/10.1097/MCC.0000000000000158 https://pubmed.ncbi.nlm.nih.gov/25340382/ DOI: https://doi.org/10.1097/MCC.0000000000000158
- Da Luz, L.T., Nascimento, B., Shankarakutty, A.K., Rizoli, S., & Adhikari, N.K.J. Effect of thromboelastography (TEG®) and rotational thromboelastometry (ROTEM®) on diagnosis of coagulopathy, transfusion guidance and mortality in trauma: Descriptive systematic review. Critical Care, 2014, Sept.; 518, 18(5), 1–26. https://doi.org/10.1186/s13054-014-0518-9 https://ccforum.biomedcentral.com/articles/10.1186/s13054-014-0518-9 DOI: https://doi.org/10.1186/s13054-014-0518-9
- Meledeo, M.A., Herzig, M.C., Bynum, J.A., Wu, X., Ramasubramanian, A.K., Darlington, D.N., Reddoch, K.M., & Cap, A.P. Acute traumatic coagulopathy: The elephant in a room of blind scientists. Journal of Trauma and Acute Care Surgery, 2017, June; 82(6S): S33–S40. https://doi.org/10.1097/TA.0000000000001431 https://journals.lww.com/jtrauma/Abstract/2017/06001/Acute_traumatic_coagulopathy__The_elephant_in_a.6.aspx DOI: https://doi.org/10.1097/TA.0000000000001431
- Unruh, M., Reyes, J., Helmer, S.D., & Haan, J.M. An evaluation of blood product utilization rates with massive transfusion protocol: Before and after thromboelastography (TEG) use in trauma. American Journal of Surgery, 2019, Dec.; 218(6), 1175–1180. https://doi.org/10.1016/j.amjsurg.2019.08.027 https://www.clinicalkey.com/#!/content/playContent/1-s2.0-S0002961019304258?returnurl=https:%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0002961019304258%3Fshowall%3Dtrue&referrer= DOI: https://doi.org/10.1016/j.amjsurg.2019.08.027
- Davenport, R., Manson, J., De’Ath, H., Platton, S., Fibms, C., Coates, A., Allard, S., Frcpath, F., Maccallum, P., Stanworth, S., & Frcpath, D. M. Functional Definition and Characterisation of Acute Traumatic coagulopathy. Critical Care Medicine Auther Manuscript, 2011, December; 39(12): 2652–2658. https://doi.org/10.1097/CCM.0b013e3182281af5 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3223409/ DOI: https://doi.org/10.1097/CCM.0b013e3182281af5
- Mohamed, M., Majeske, K., Sachwani, G.R., Kennedy, K., Salib, M., & McCann, M. The impact of early thromboelastography directed therapy in trauma resuscitation. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 2017, October; 25(1), 1–11. Article No. 99. https://doi.org/10.1186/s13049-017-0443-4 https://sjtrem.biomedcentral.com/articles/10.1186/s13049-017-0443-4 DOI: https://doi.org/10.1186/s13049-017-0443-4
- Gonzalez, E., Pieracci, F. M., Moore, E.E., & Kashuk, J.L. Coagulation abnormalities in the trauma patient: The role of point-of-care thromboelastography. Seminars in Thrombosis and Hemostasis, 2010, October; 36(7): 723–737. https://doi.org/10.1055/s-0030-1265289 https://pubmed.ncbi.nlm.nih.gov/20978993/ DOI: https://doi.org/10.1055/s-0030-1265289
- Raffan Sanabria, F., Ramírez P., F.J., Cuervo, J.A., & Sánchez Marín, L.F. Tromboelastografía. Revista Colombiana de Anestesiología, 2005, July-September; 33(3); 181-186. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-33472005000300006&lng=en&nrm=iso
- Maegele, M. The diagnosis and treatment of acute traumatic bleeding and coagulopathy. Deutsches Arzteblatt International, 2019, Nov.; 116(47): 799–806. https://doi.org/10.3238/arztebl.2019.0799 https://pubmed.ncbi.nlm.nih.gov/31847951/ DOI: https://doi.org/10.3238/arztebl.2019.0799
- Liu, C., Guan, Z., Xu, Q., Zhao, L., Song, Y., & Wang, H. Relation of thromboelastography parameters to conventional coagulation tests used to evaluate the hypercoagulable state of aged fracture patients. Medicine (Baltimore, United States), 2016, June; 95(24), e3934. https://doi.org/10.1097/MD.0000000000003934 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4998491/ DOI: https://doi.org/10.1097/MD.0000000000003934
- Cardenas, J. C., Rahbar, E., Pommerening, M. J., Baer, L.A., Matijevic, N., Cotton, B.A., Holcomb, J. B., & Wade, C.E. Measuring thrombin generation as a tool for predicting hemostatic potential and transfusion requirements following trauma. Journal of Trauma and Acute Care Surgery, 2014, December; 77(6), 839–845. https://doi.org/10.1097/TA.0000000000000348 https://pubmed.ncbi.nlm.nih.gov/25099452/ DOI: https://doi.org/10.1097/TA.0000000000000348
- Joseph, L., Fink, L.M., & Hauer-Jensen, M. Cytokines in coagulation and thrombosis: A preclinical and clinical review. Blood Coagulation and Fibrinolysis, 2002, March; 13(2): 105–116. https://doi.org/10.1097/00001721-200203000-00005 https://pubmed.ncbi.nlm.nih.gov/11914652/ DOI: https://doi.org/10.1097/00001721-200203000-00005
- Vernon, T., Morgan, M., & Morrison, C. Bad blood: A coagulopathy associated with trauma and massive transfusion review. Acute Medicine & Surgery. 2019, July; 6(3): 215-222.https://doi.org/10.1002/ams2.402 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603326/ DOI: https://doi.org/10.1002/ams2.402
- Frith, D., Davenport, R., & Brohi, K. Acute traumatic coagulopathy. Current Opinion in Anaesthesiology, 2012, April; 25(2), 229–234. https://doi.org/10.1097/ACO.0b013e3283509675 https://journals.lww.com/co-anesthesiology/Abstract/2012/04000/Acute_traumatic_coagulopathy.19.aspx DOI: https://doi.org/10.1097/ACO.0b013e3283509675
- Olldashi, F., Kerçi, M., Zhurda, T., Ruçi, K., Banushi, A., Traverso, M. S., Jiménez, J., Balbi, J., Dellera, C., Svampa, S., Quintana, G., Piñero, G., Teves, J., Seppelt, I., Mountain, D., Hunter, J., Balogh, Z., Zaman, M., Druwé, P., Chengo, C. et.al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): A randomised, placebo-controlled trial. The Lancet, 2010, July; 376(9734), 23–32. https://doi.org/10.1016/S0140-6736(10)60835-5 https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(10)60835-5/fulltext DOI: https://doi.org/10.1016/S0140-6736(10)60835-5
- The CRASH-3 Trial Collaborators. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. The Lancet, 2019, Nov.; 394(10210), 1713–1723. https://doi.org/10.1016/S0140-6736(19)32233-0 DOI: https://doi.org/10.1016/S0140-6736(19)32233-0