Resumen
Introducción: El uso de cámaras de luz con longitudes de onda en el espectro del infrarrojo cercano (IRC) y la angiografía con verde de indocianina (VI), permiten visualizar y determinar la perfusión de las glándulas paratiroides. Objetivos: Determinar diferencia en la viabilidad de las glándulas paratiroides después de la aplicación de VI a una dosis de 0.01mg/kg contra una dosis de 0.02mg/kg de peso. Metodología: Se obtuvo una muestra de 20 pacientes operados por patología tiroidea, divididos aleatoriamente en dos grupos. Durante la cirugía se registró el número de glándulas paratiroides identificadas visualmente bajo luz de xenón convencional y por autofluorescencia en el espectro IRC. Posteriormente, se inyecto por vía endovenosa VI a una dosis de 0.01mg/kg en el grupo A y a una dosis de 0.02mg/kg en el grupo B. Después de la inyección del colorante, se midió con una escala colorimétrica la perfusión de las glándulas paratiroides. Resultados: Se identificaron un total de 37 glándulas paratiroides bajo luz de xenón convencional y 42 glándulas paratiroides por autofluorescencia en el espectro IRC (p=0.4152). La diferencia entre la determinación de la viabilidad de las glándulas paratiroides con luz de xenón convencional y por angiografía después de la inyección de VI no fue significativa (p=0.5714). Tampoco hubo diferencia entre el grupo A y B (p=1). Conclusiones: No hubo diferencia en la determinación de la perfusión de las glándulas paratiroides utilizando una dosis de VI de 0.01mg/kg o una dosis de 0.02mg/kg.
Citas
- Iglesias, P., & Díez, J. J. Endocrine complications of surgical treatment of thyroid cancer: an update. Experimental and Clínica Endocrinología & Diabetes, 2017, September; 125(08): 497-505. https://doi.org/10.1055/s-0043-106441 DOI: https://doi.org/10.1055/s-0043-106441
- Quick, C. R., & Arulampatam, T. H. Disorders of the Thyroid, Parathyroid and Adrenal Glands. In: S. M. Biers (Ed.), Essential Surgery: Problems, Diagnosis and Management 6th ed., 2020; pp. 621-635. United Kingdom: Elsevier.
- Ritter, K., Elfenbein, D., Schneider, D.F., Chen, H., & Sippel, R.S. Hypoparathyroidism after total thyroidectomy: incidence and resolution. Journal of Surgical Research, 2015, August; 197(2): 348-353. https://doi.org/10.1016/j.jss.2015.04.059 DOI: https://doi.org/10.1016/j.jss.2015.04.059
- González-Botas, J.H., & Loourido Piedrahita, D. Hypocalcaemia after total thyroidectomy: incidence, control and treatment. Acta Otorrinolaringologica Esp. (English Edition), 2013, March-April; 64(2): 102-107. https://doi.org/10.1016/j.otorri.2012.09.001 DOI: https://doi.org/10.1016/j.otoeng.2012.09.009
- Akerström, G., Malmaeus, J., & Bergström, R. Surgical anatomy of human parathyroid glands. Surgery, 1984, January; 95(1): 14-21. https://pubmed.ncbi.nlm.nih.gov/6691181/
- Bliss, R.D., Gauger, P.G., & Delbridge, L.W. Surgeon's approach to the thyroid gland: surgical anatomy and the importance of technique. World journal of surgery, 2000, August; 24(8): 891-897. https://doi.org/10.1007/s002680010173 DOI: https://doi.org/10.1007/s002680010173
- Torres Rosales, L.M. Caracterización y tratamiento quirúrgico del cáncer diferenciado de tiroides. Tesis: Maestría en Ciencias Médicas con especialidad en Cirugía General. Universidad San Carlos de Guatemala, 2015. http://biblioteca.usac.edu.gt/tesis/05/05_9571.pdf
- Illescas, M. (2017). Variación de los niveles de calcio en pacientes posoperados de tiroidectomía total. Tesis: Maestría en Ciencias Médicas con Especialidad en Cirugía General. Universidad San Carlos de Guatemala. 2017. http://biblioteca.usac.edu.gt/tesis/05/05_10473.pdf
- Estrada Méndez, P.M. Prevención de la hipocalcemia postoperatoria con uso rutinario de calcio y vitamina D oral en pacientes sometidos a tiroidectomía total. Tesis: Maestría en Ciencias Médicas con Especialidad en Cirugía Oncológica. Universidad San Carlos de Guatemala. 2016. http://biblioteca.usac.edu.gt/tesis/05/05_10144.pdf
- Hillary, S.L., Guillermet, S., Brown, N.J., & Balasubramanian, S.P. Use of methylene blue and near-infrared fluorescence in thyroid and parathyroid surgery. Langenbecks Archives of Surgery, 2018, February; 403(1): 111-118. https://doi.org/10.1007/s00423-017-1641-2 DOI: https://doi.org/10.1007/s00423-017-1641-2
- Elbassiouny, S., Fadel, M., Elwakil, T., & Elbasiouny, M.S. Photodynamic diagnosis of parathyroid glands with nano-stealth aminolevulinic acid liposomes. Photodiagnosis and Photodynamic Therapy, 2018, March; 21: 71-78. https://doi.org/10.1016/j.pdpdt.2017.11.004 DOI: https://doi.org/10.1016/j.pdpdt.2017.11.004
- Antakia, R., Brown, B.H., Highfield, P.E., Stephenson, T.J., Brown, N.J., & Balasubramanian, S.P. Electrical impedance spectroscopy to aid parathyroid identification and preservation in central compartment neck surgery: a proof of concept in a rabbit model. Surgical innovation, 2016, April; 23(2): 176-182. https://doi.org/10.1177/1553350615607639 DOI: https://doi.org/10.1177/1553350615607639
- McWade, M.A., Paras, C., White, L.M., Phay, J.E., Solórzano, C.C., Broome, J.T., & Mahadevan-Jansen, A. Label-free intraoperative parathyroid localization with near-infrared autofluorescence imaging. The Journal of Clinical Endocrinology & Metabolism, 2014, December; 99(12): 4574-4580. https://doi.org/10.1210/jc.2014-2503 DOI: https://doi.org/10.1210/jc.2014-2503
- Falco, J., Dip, F., Quadri, P., de la Fuente, M., & Rosenthal, R. Cutting edge in thyroid surgery: autofluorescence of parathyroid glands. Journal of the American College of Surgeons, 2016, August; 223(2): 374-380. https://doi.org/10.1016/j.jamcollsurg.2016.04.049 DOI: https://doi.org/10.1016/j.jamcollsurg.2016.04.049
- Razavi, A.C., Ibraheem, K., Haddad, A., Saparova, L., Shalaby, H., Abdelgawad, M., & Kandil, E. Efficacy of indocyanine green fluorescence in predicting parathyroid vascularization during thyroid surgery. Head & neck, 2019, September; 41(9): 3276-3281. https://doi.org/10.1002/hed.25837 DOI: https://doi.org/10.1002/hed.25837
- Zaidi, N., Bucak, E., Yazici, P., Soundararajan, S., Okoh, A., Yigitbas, H., Dural, C. & Berber, E. The feasibility of indocyanine green fluorescence imaging for identifying and assessing the perfusion of parathyroid glands during total thyroidectomy. Journal of Surgical Oncology, 2016, June; 113(7): 775-778. https://doi.org/10.1002/jso.24237 DOI: https://doi.org/10.1002/jso.24237
- Chance, B. Near‐Infrared Images Using Continuous, Phase‐Modulated, and Pulsed Light with Quantitation of Blood and Blood Oxygenation a. Annals of the New York Academy of Sciences, 1998, February; 838(1): 29-45. https://doi.org/10.1111/j.1749-6632.1998.tb08185.x DOI: https://doi.org/10.1111/j.1749-6632.1998.tb08185.x
- Aleman, R., Falco, J., Dip, F., Menzo, E.L., & Rosenthal, R.J. Chapter 17: Fluorescence-guided surgery for parathyroid gland identification. In: Strategies for Curative Fluorescence-Guided Surgery of Cancer, Academic Press, 2020; 239-249. https://doi.org/10.1016/B978-0-12-812576-2.00017-3 DOI: https://doi.org/10.1016/B978-0-12-812576-2.00017-3
- Stelzle, F., Rohde, M., Riemann, M., Oetter, N., Adler, W., Tangermann-Gerk, K., Schmidt, M., & Knipfer, C. Autofluorescence spectroscopy for nerve-sparing laser surgery of the head and neck—the influence of laser-tissue interaction. Lasers in medical science, 2017, August; 32(6): 1289-1300. https://doi.org/10.1007/s10103-017-2240-8 DOI: https://doi.org/10.1007/s10103-017-2240-8
- McWade, M.A., Sanders, M.E., Broome, J.T., Solórzano, C.C., & Mahadevan-Jansen, A. Establishing the clinical utility of autofluorescence spectroscopy for parathyroid detection. Surgery, 2016, January; 159(1): 193-203. https://doi.org/10.1016/j.surg.2015.06.047 DOI: https://doi.org/10.1016/j.surg.2015.06.047
- Dip, F., Falco, J., Verna, S., Prunello, M., Loccisano, M., Quadri, P., White, K., & Rosenthal, R. Randomized controlled trial comparing white light with near-infrared autofluorescence for parathyroid gland identification during total thyroidectomy. Journal of the American College of Surgeons, 2019, May; 228(5): 744-751. https://doi.org/10.1016/j.jamcollsurg.2018.12.044 DOI: https://doi.org/10.1016/j.jamcollsurg.2018.12.044
- Kim, S.W., Lee, H.S., & Lee, K.D. Intraoperative real-time localization of parathyroid gland with near infrared fluorescence imaging. Gland Surgery, 2017, October; 6(5): 516-524. https://doi.org/10.21037/gs.2017.05.08 DOI: https://doi.org/10.21037/gs.2017.05.08
- Miwa, M. Ohtsubo, S., Kusano, M. Indocyanine Green Fluorescence Properties. In: Kusano, M., Kokudo, N., Toi, M., & Kaibori, M., eds. ICG Fluorescence Imaging and Navigation Surgery. Tokio, Japan: Springer. 2016. pp. 9-20 https://doi.org/10.1007/978-4-431-55528-5_2 DOI: https://doi.org/10.1007/978-4-431-55528-5_2
- Fortuny, J.V., Belfontali, V., Sadowski, S.M., Karenovics, W., Guigard, S., & Triponez, F. Parathyroid gland angiography with indocyanine green fluorescence to predict parathyroid function after thyroid surgery. The British Journal of Surgery, 2016, April; 103(5): 537-543. https://doi.org/10.1002/bjs.10101 DOI: https://doi.org/10.1002/bjs.10101
- Yu, H.W., Chung, J.W., Yi, J.W., Song, R.Y., Lee, J. H., Kwon, H., Kim, S.-J. & Lee, K. E. Intraoperative localization of the parathyroid glands with indocyanine green and Firefly (R) technology during BABA robotic thyroidectomy. Surgical Endoscopy, 2017, July; 31(7), 3020-3027. https://doi.org/10.1007/s00464-016-5330-y DOI: https://doi.org/10.1007/s00464-016-5330-y
- International Society for Fluorescence Guided Surgery (ISFGS). Dosing and Timing Chart on How to Use Indocyanine Green (ICG) by Procedures. 2021. https://www.facebook.com/ISFGS/posts/updated-dosing-and-timing-chart-on-how-to-use-indocyanine-green-by-procedurefind/2991946457713384/
- Gosvig, K., Jensen, S.S., Qvist, N., Nerup, N., Agnus, V.A., Diana, M., & Ellebæk, M.B. Quantification of ICG fluorescence for the evaluation of intestinal perfusion: comparison between two software-based algorithms for quantification. Surgical endoscopy, 2021, September; 35(9): 5043–5050. https://doi.org/10.1007/s00464-020-07986-7 DOI: https://doi.org/10.1007/s00464-020-07986-7
- Di Marco, A.N., & Palazzo, F.F. Near-infrared autofluorescence in thyroid and parathyroid surgery. Gland surgery, 2020, February; 9(Suppl 2), S136–S146. https://doi.org/10.21037/gs.2020.01.04 DOI: https://doi.org/10.21037/gs.2020.01.04
- Yokoyama, J., Ohba, S. ICG Fluorescent Image-Guided Surgery in Head and Neck Cancer In; Kusano, M., Kokudo, N., Toi, M., & M. Kaibori, (eds.) ICG Fluorescence Imaging and Navigation Surgery. Tokio, Japan: Springer. 2016; pp. 49-62. https://doi.org/10.1007/978-4-431-55528-5_5 DOI: https://doi.org/10.1007/978-4-431-55528-5_5
- Wang, B., Zhu, C.R., Liu, H., Yao, X.M., & Wu, J. (2021). The Accuracy of Near Infrared Autofluorescence in Identifying Parathyroid Gland During Thyroid and Parathyroid Surgery: A Meta-Analysis. Frontiers in endocrinology, Sec. Thyroid Endocrinology. 2021, June; 12; 701253. https://doi.org/10.3389/fendo.2021.701253 DOI: https://doi.org/10.3389/fendo.2021.701253